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DESIGN OF A SYSTEM THAT UNDERSTANDS INFORMAL

SPECIFICATIONS'
Ralph M Weischedel

Daniel L Chester

Computer & Information Sciences
University of Delaware

Newark, DE 19711

28 April 1983

ABSTRACT
This paper describes a system for understanding English definitions of software

modules and generating formal specifications. The design of the system itself is
emphasized, particularly

- the choice of a target specification language,

- selection of a parsing strategy, and

- treatment of semantic problems, such as understanding spatial metaphor and
interpreting known words in new environments.

1. INTRODUCTION
A cornerstone of the design of large software systems is the definition of their

modules based on the information-hiding principle [Parnas 72]. Given that principle, one
should define a module interface without revealing the module's (internal) implementation.

One could define a module interface using a formal language such as
SPECIAL [Roubine 76) or AFFIRM [Guttag 78, Musser 79) or using natural language.
Formal specifications of modules offer many advantages for design of large software
systems, including lack of ambiguity, precision, attention to detail, mechanical processing,
and appropriateness for both proof techniques and transformations. Nevertheless, few
would argue that they are either easy to create or easy to understand once created

[Balzer 78) argues that some aspects of informality are actually desirable in
specifying software modules. Futhermore, [Hobbs 77) cites several aspects of natural
langauge I tics which are preferable to existing formal languages.

This paper investigates an artificial intelligence approach to combining the
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advantages of both formal and natural languages. The long-term goal is a system which

could take as input an English definition of a module, and generate an equivalent formal
specificatiort In addition, the system should generate an English paraphrase of its

understanding of the input, so that the user 2 may easily check the systems understanding

The remainder of the paper describes the design decisions made in implementing
a prototype to understand English texts defining data structures. Section 2 enumerates
some of the reasons we feel are most important for using natural language. Section 3
defines the target specification language and the motivation in selecting it Section 4
relates our experience in using a parser for texts defining data structures. Section 5 deals
with semantic issues such as interpreting spatial metaphors and selecting precise translations
of vague English terms. Related work and our conclusions are presented in sections 6 and

7. 1

2. THE MOTIVATION FOR NATURAL LANGUAGE
It is our contention that a key to human understanding is having a model of the

concept to be understood For complex concepts, the model may not be very precise, but
does provide a framework within which detail can be organized Present-formal languages
are weak at expressing such models, unless they are stated in natural language as
comments or other accompanying explanations.

If this contention is true, we should am numerous examples of English linguistic
expressions used to convey a view of a software module. In examining simple definitions
of data structures, we indeed find that For example, spatial metaphors are prevalent in
data structure descriptions, even though the spatial metaphor has little to do with the actual
physical realization of any implementation. For instance, one speaks of the ends of a list,
the top of a stock, running down a list, following a pointer, etc. Such expressions are
simple metaphors in that they provide a spatial view which is independent of software or
hardware existing in thres dimensions.

Analogy also supports this contention, since analogy describes one concept in
terms of another, and since it is intended at a general, rather than detailed, level For
instance, one finds definitions such as A stack Is a queue In which all insertions end
deletions occur at one end in [Horowitz 76]. Similarly, in the English definition of the
design of the kernel of a secure operating system [Ford 78], one finds the argument to a

system call defined as the sticky bit of UNIX3 .

Yet another instance is the use of vague terms to connote certin impressions
In defining a queue in terms of an ordered list, [Horowitz 76] defines the enqueue

operation as adding an element i to the rear of a queue, even though no operation of

2The usw of this Al sytem Is sipecifying a now system Helhe is expert In the application erse.

3 UNX is a trederk of Ie Laboormie
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adding has been defined for ordered lists. Rather a notion of adding something to a
sequence is presumed, as well as the ability to generalize the notion to the new data
structure

If our contention is correct, one should see concepts introduced specifically to
summarize information For instance, in the English description of a provably secure
operating system [Ford'78), one finds the statement A SEID is returned as the result of
all new object creations (K build segment, ...). This introduces the concept of interface
operations that create new objects; it uses that concept to summarize the fact that six
operations are somewhat similar in purpose and return the same class of value.

One could argue that this evidence is not compelling, that all that is needed is
richer formal language semantics. For instance, one could try to have a rigorous, precise
definition of analogy incorporated in formal languages Yet, the prevalence and value of
mnemonics for procedure names, arguments, constants, etc. is strongly suggestive that no
matter what the formal language, a critical part of the understanding of formal
specifications will depend on providing an individual with intuitive concepts as a framework
for organizing detail. If purely formal languages were adequate, then mathematics after all
of these centuries would be stated exclusively in formalisms.

Based on our contention that a key to human understanding is having a model of
the concept to be understood, natural langauge has many desirable qualities for
specification Other motivations are presented in [Balzer 783 and [Hobbs 77].

3. SELECTION OF TARGET LANGAUGE AND KNOWLEDGE
REPRESENTATION LANGUAGE

The target formal specification language selected is Horn clauses. A Horn clause
has the form

C IF Al & A2 & ... & An
44

where n>=O, C is an atomic formula, and each Ai is an atomic formula4 . A Horn clause
therefore is a restricted form of formula in first order logic Since all variables are free,
all variables are i"plicitly universally quantified

A set of Horn clauses stating axioms about the operations at the interface of a
software module can serve as a specification of the module A prinary reason for
selecting Horn claumes as the target langauge is that they are also highly appropriate as a
knowledge representation language for artificial intelligence. Furthermore, Horn clause
theorem provers [Chester 80] are one approach to modelling reasoning. Consequently,
once a users English specification has been understood, adding the set of axioms to the
knowledge bae of the system offers two potentials

4An atoami frmua is a predicate applied to terms. A term is a constant. a variable, or a function applied J
to 1191

S6. 'k . * 4 , .a.*.* - 4'.. *
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- the system can grow in competence,

- the user may define new entities in terms of modules defined earlier, and

- the user may run the theorem prover to test the correctness of the
specification or to prove properties of the specification.

As an example, consider the Horn clauses below. All predicates (including
equalities and inequalites) are expressed in a LISP-like prefix notation; variables are prefixed
by an underscore; and (._X . _Y) is an abbreviation for a term (f _X _Y) expressing the
result of adding _X at the front of _Y.

1. (>= LENGTH _S) 0) IF (TUPLE _S)

2. TUPLE _S) IF (NULL _S)

3. (TUPLE LX. _Y F (TUPLE _Y) & (CONSISTENT-TYPE L_X. _Y) _T)

They correspond to the following facts about tuples respectively-
1. A tuple has a nonnegative length

2 The null tuple is a tuple.

3. A form whose first element is X is a tupe if the rest of the form is and
if the form has a consistent type _T.

From the first Horn clause, we notice that facts that could be expressed with existentially
quantified variables will involve Skolem functions rather than existential quantification

Formal specification languages are a topic of research It is possible that
Gist [Balzer 82J or Tecton [Kapur 82] will lead to languages more appropriate to our
tsL Both are attempting to incorporate semantics closer to that of natural language as
used in informal specifications. If successful, the understanding task may be somewhat
simplified, though traditional problems in natural language such as ambiguity, vagueness,
reference resolution, metaphor, etc. will still exist

4. PARSING AND SEMANTIC INTERPRETATION
Given the selected target language, there are several alternatives for the style of

grammar and of semantic interpretation. For instance, rather than accounting for all words
in a text, one could use a strategy of processing only phrases that are relevant to a
domain-dependent schema of stereotypical concepts [Schank 80]. This strategy seems
inappropriate for the application of module specification, since in defining a non-
stereotypical structure any phrase skipped may be critical to the definition

Another decision is whether to select a general-purpose grammar having broad
coverage of English and then to add special phrases, constructions, and lexical items
peculiar to the application. The advantage of this of course is the potential of using
someone else's grammar rather than creating one tailored to the doman Another
alterntive is to build one specific to the application; semantic grammars [Burton 76]
exemplify this. A semantic grammar has nonterminals specific to semantic classes of the
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domain, -such as dat structure phrases, rather than syntactic constituents, such as noun
phrases. Because of tight coupling between a phrase and a semantic category, senseless
interpretations can be rapidly discarded

We chose RUS [Bobrow 78J, a broad coverage grammar of English which

performs semantic interpretsion incrementally. For each constitutent y found and proposed

as part of a constituent x, the gramar calls the semantic component to extend the
semantic representation of x based on finding y. If yes interpretation is inconsistent with

semantic constraints on adding it to x, then the parser abandons this parse When the
grammar proposes that a constituent is complete, the semantic component receives a

wmsage. Either it returns a semantic interpretation for x or it vetoes the proposed parse
of x.

The semantic component therefore must be prepared to build structures
incrementally, rather than waiting till the end of a constituent x before applying semantic
constraints on it The constraints encoded in our semantic interpreter are organized in case
frames, a very common style of encoding selection restrictions. Each phrase has a head
lexical item, e.g verbs for typical clauses, common nouns for typical noun phrases, and
propositions for prepostional phrases. Any lexical item that can serve as a head may -have
several case frames associated with it, one frame per sense of the head word A frame
is a list of possible phrase slots that may be associated with a word sense; for each slot
a semantic constraint is associated, limiting the kind of entity that can fill the slot For
instamce, delete has three slots. The logical subject must be a program or person; the
logical object must be a data entity; a prepositional phrm whose head is from must have
an object which is a data structure. That is, one sense of delete is that a person or a
program may delete a data entity from a data structure. In addition, a slot may be marked
as optional or mandatory. Each case frame also includes a structure-building operation,
stating what logical expression is to be built for this form

- Processing within the semantic component falls into three cases.

- As soon as the proposed head of a phrase x is found, all case frames are
retrieved as possible word senses.

- As a phrase y is proposed to fill a given slot in x, the semantic constraint of
that slot is tested on y, potentially eliminating some of the case frames from
further consideration If none remain, y cannot be added to x.

-When the parser proposes that x is complete, the semantic component
eliminates any case frame with unfilled mandatory slots and also builds the
semantic representation for any remaining case frame.

In using this approach three aspects of our experience are interesting First, the
major modification to the RUS grammar was to allow mathematical notation, so that one

can use it freely within English Thus, a text such as the following can be parsed by the

modifled grammar' (The sentences have been numbered for expository purposes.)

5 Thi is a modified version of a definition given on pages 41-42 of [Horowitz 76].

--I.--*- t ~ . . . . . a -.- - .. ~ .-
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1. We say that an ordered list is empty or it can be written as (A[1J, A [2J,

-,A aNJ) where the Arl] are atoms from some set S.

2. There are a variety of operations that are performed on these lists.

a These operations include the followinq

4. Find the length N of the list

5. Retrieve the ith element, 1<=K<=N

6. Store a new value at the ith position. 1 , =IN

7. Insert a new element at postion I, 1<=I<=N+1 causing elements numbered
1,1+1 , -,N to become numbered 1+1, 1+2 ... , N+1.

8 Delete the element at postion I, 1<=I<=N causing elements numbered 1+1 ... , N
to become numbered I, 1+1, ... N-1.

* The modifications were easy to make, for the patterns with which the mathematical
expressions occur fit naturally into the grammar of English.

Second, becuase of a broad-coverage grammar, adding new texts requires
proportionally little time on the syntactic aspects Some new dictionary entries are
required, and very infrequently a new construction must be added Therefore, one can
concentrate on the semantic issues, which dominate the effort in extending the system

.Third, RUSs calls to the semantic component eliminates many senseless
interpretation& For the text above, the first interpretation found by the parser/semantic
component was the correct one in all but one sentence. Furthermore, five of the
sentences yielded only one interpretation; the other three yielded only two. As the
semantic component is expanded to broader and broader domains, the case frame
constraints will be somewhat less effective. For instance, one could expect that there
would be 5 interpretations for the first sentence, only one for the next four, and two for
the last three in broader environmnt Nevertheless, this is radically less than the number
of interpretations if no selection restrictions were applied during parsing

Based on these observations, we feel the time is ripe to adopt broad coverage
grammars of English which interact with semantic components to prune senseless parses.
The alternative of writing one's own grammar requires substantial time, which could be
devoted to other purposes.

5. ADDITIONAL SEMANTIC PROBLEMS
Semantic Interpretation, definite reference resolution, and quantifier scope

decisions, are well-known semantic problems of natural langauge understanding Yet even
after a system has generated a semantic representation R where such decisions have been
made, there may still be a need for further transformation and understanding of the input
to generate a representation S for the underlying application system There are at least
three reasons for this.
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First, consider spatial metaphor. Understanding spatial metaphor seems to require
computing some concrete interpretation S for the metaphor; however, understanding the
metaphor concretely may be attempted after computing a semantic representation R that
represents the spatial metaphor formally but without full understanding. Generating an
English paraphrase of the system-generated formal specification to allow the user to check
the system's undersanding is likely to be both easier and more understandable to the user
if the user's terminology is employed By having an intermediate level of understanding
such as R, and generating English output from it, one may not have to recreate the
metaphor, for the terms in R use it as a primitive.

Second, the needs of the underlying application system may dictate
transformations that are neither essential to understanding the English text nor linguisticly
motivated In a data base environment transformations of the semantic representation may
yield a retrieval request that is computationally less demanding [King 80). To promote
portability, EUFID [Templeton 83) and TQA [Damerau 81) are interfaces that have a
separate component for transformations specific to the data base. In software
specification, mapping of the semantic representation R may yield a form S which is more
amenable for proving theorems about the specification or for rewriting it into some
standard form

N
The following example, derived from a definition of stacks on page 77 of

[Horowitz 76] illustrates these first two reasons. A stack is an ordered list in which
all insertions and deletions occur at one end called the top. A theorem prover for
abstract data types would normally assume thot the end of the stack in question is referred
to by a notation such as A[ 1] if A is the name of the stack, rather than understanding the
spatial metaphor "one end".

Third, it may be convenient to design the transformation process in two phases,
where the output of both phases is a semantic representation In our system, we have
chosen to map certain paraphrases into a common form via a two step process. The
forms "ith element" and "element i" each generate the same term as a result of semantic
interpretation However, the semantic interpreter generates another term for "element at
position r' due to the extra lexical items "at" and "position". Obviously, all three
expressions correspond to one concept The system must recognize that the two terms
generted by the smawtic interpreter are paraphrases and map them into one form.

In our system, the semantic representation R is in the form of Horn clauses. All
sanntic interpretation, quantifier scope decisions, and reference resolution has been
performed prior to this second translation phase which is performed by the mapping
componnt. Input to the mapping component for the text defining ordered lists is given in
the apendi

The rules of the mapping component are all encoded as Horn clauses. The
antecedent atomic formulas of our rules specify either

1. the structural change to be made in the collection of formulas or

lr ~~~~~~~~~~~~~~..=.. .... , 0.. .... .. o- .- .. ....- .. ., .. ,- .•. .•. -. , -. o.



2. conditions which are not structural in nature but which must be true if the
mapping is to apply.

We will use the notation (MAPPING-RULE (a 1 - am) _x (c I ... ck) _y) to mean that the
atomic formulas al - am must be present in the list _x of atomic formulas; the list _x
of formulas is assumed to be implicitly conjoined The variable _y will be bound to the
result of replacing the formulas a 1, -, am in _x with the formulas c 1 .., ck. There is a
map between two lists, _x and _y, of atomic formulas if (MAP _x _y) is true.

The two examples given earlier are detailed next For expository purposes the
rules given in this section have been simplified

Consider the following example A stack Is an ordered list in which e//
inwrtions and deletions occur at one end ca/led the top. ADD(IS adds item I to stack
S. In this environment spatial metaphors tend to be more frozen than creative. To
understand "one end", we assume the following rules:

1. For a sequence _oD, we may map "E is an end of _D" to "_E is the first
sequence element of _D".

2. An ordered list is a sequence.

Facts (1) and (2) are encoded as Horn clauses below.

(MAP _X _Y) F (MAPPING-RULE ((END _E __D)) X
((SEQUENCE-ELEIVENT _E 1 _D)) _Y) &

(SEQUENCE _D)

(SEQUENCE _D) IF (ORDERED-LIST _D)

The system knows how to map the notion of "end of a sequence", and it knows that
ordered lists are sequences. Since the first sentence is discussing the end of an ordered
list, the two rules above are sufficient to map "end" into the appropriate concrete semantic
representation. The power and generality of this approach is that

- a chain of reasoning may show how to view some entity _D as a sequence
(and therfore the rules show how to interpret "end of r)D', and

- other mapping rules may state how to interpret spatial metaphors unrelated to
'end" or to sequences.

We propose that the same mechanism can deal with certain vague, extended
uses of words, such as add in the previous example: In stating that ADD(IS) adds item I
to stick S, add cannot be predefined, since its meaning is being defined for stacks.
Nevertheless, it is reasonable to assume that there is a general relation between "add" and
relisted concepts such as uniting, including, or, in the data structure environments, inserting.
Consequently, we propose the following fact in addition to the two above.

-For a sequence _S, we may map "add -1 to _S" to "insert __1 at some
position _X of -So.

ft may be stated formally as

L, tl .. . . . .. . . . . . .. .
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(MAP _W _Z) IF (MAPPING-RULE (ADD 1 _S)) _W ((INSERT __I S _X)) _Z)
& (SEQUENCE _S)

Notice that _X will be unbound However, the Horn clauses generated for the first
sentence (A stack is an ordered list in which all insertions and deletions occur at one
end called the top) will imply that _X is the position corresponding to the end called top.
Therefore, the vague, extended use of "add" can be understood using the inference
mechanism of the mapping component Other rules may state how to interpret an
extended use of add by relating it to views other than sequences.

Another problem involves mapping the forms "ith element", "element i", and
"element at position i" into the same representatior Assume that the semantic interpreter
generates for each of the first two the list of formulas ((ELEMENT _X) (IDENTIFIED-BY
_X _Y)). The Horn clause for that mapping is as follows:

(MAP _W _Z) IF (TOPIC _T) & (SEQUENCE _T) &
MAPPING-RULE ELEENT _X) (IDENTIFIED-BY _X _Y)) _W

((SEQUENCE-ELEMENT _X Y -T)) _Z)

Note that this rule assumes that in context some sequence _T has bee. identified as the
topic; the rule identifies that the element _X is the _Yth member of the sequence .T.
For the phrase "element at position i", assume the semantic interpreter generates the list of

formulas (ELEMENT __X) (AT _X (POSITION _P)) (IDENTIFIED-BY __P -Y)). The mapping
rule for it is similar to the one above.

MAP _W _Z) IF (TOPIC _T) & (SEQUENCE _T) &MAPPING-RULE
((ELEMENT _X) (AT _X (POSITION _P)) (IDENTIFIED-BY _P _Y))
_W ((SEQUENCE-ELEMENT _X _Y _T)) _Z)

This second rule must be tried before the prior one.

The mapper halts when no more rules can be applied

6. RELATED WORK
A number of applied Al systems have been developed to support automating

software construction [Balzer 78, Green 76, Biermann 80, Gomez 823. Of these, our
effort is the only one that has focussed on the linguistic issues in the mapping problem. It
is also distinguished by our design decisions regarding the target langauge and
paraing/smnantic interpretation. The systems in [Green 76, Biermann 80, Gomez 82J were

designed for geerating algorithms from English input In algorithm generation, efficiency
of the algorithm generated is of critical concern This problem is not critical in module
specification, since the specification forms a contract stating what programs implementing

the specfic n must do.

-"- .-.
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Viewing spatial metaphors in terms of a scale was proposed in [Hobbs 77).
Our model is somewhat more general in that the inference process

- permits specific constraints for each metaphor, not just the one view of a
scale, and

- accounts for other mapping problems in addition to spatial metaphor.

A very similar approach to mapping has been proposed in (Mark 80). Instead
of using Horn clauses as the formalism for mapping, they encode their rules in KL-ONE

[Brachman 78]. The concern in [Mark 80) is inferring the appropriate service to
perform in response to a user request, rather than demonstrating means of interpreting
spatial metaphors or of finding contextually dependent paraphrases.

The value of generating a paraphrase for a formal specification has been
discussed in [Swartout 82). Language generation is a very active area of research; an
overview of the sate of the art is provided in [Mann 81]. No generation component has
been included in our prototype system

7. CONCLUSIONS
The design of a system to generate formal specifications from natural language

definitions is a long term research goal. The availability of broad-coverage grammars
[Bobrow 78, Robinson 82, Sager 81] that use selection restrictions while parsing to

eliminate anomolous parses is an important step toward that There are five broad areas
for future work.

- formal specification languages with richer semantics so that the level of the
target language is closer to that of natural languages,

- development of more flexible, forgiving natural language interfaces
[Weischedel 83] that have partial understanding even of poorly formed

input,

- extension of the technology to broad areas of specification,

- development of high quality English generation components both for creating a
paraphrase of the formal specification and for generating questions to clarify
ambiguous or vague aspects of the English definitions, and

- further development of the mapping phase.

There are several reasons why one may want such a mapping phase even after a
semantic representation for an utterance has been computed The advantage of using Horn
clauses (or any other deduction mechanism) in this mapping phase is the ability to include
nonstructral conditions. This means that the mapping rules may be based on reasoning
about context

There are three areas for further development of the mapping phase:

- generating mapping rules based on additional texts,

. , ,' .. ;i ..,. "',.,/.,.' - "':'. ;, " .,,': '': :., 
.

.,-, .: , , "_" :..-,_ '":II: -', .. . , ,. 
"
"''" ':"-"" " ,- ..- - .- ,- " " " "- '
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:0 - Investigating use of the mapping component in reference resolution, and

- developing an indexing technique to run the mapper in a forward chaining
mode

APPENDIX
We include here the actual Horn clauses that serve as the output of the

semantic component and as the input to the mapping component The English that
generated the Horn clauses is provided for reference in italics; it is not supplied as input
to the mapping component Ampersands have been inserted for expository purposes. For
the first sentence, there is no easy way to convert the disjunction to a Horn clause.
Therefore, we generate an extended notation allowing disjunction for that case.

We say that an ordered list is empty or it can be written as (A[1 ,...,A[NJ)
where the AM) are atoms from some set S.

((OR (((EMPTY A23) IF (LIST A23) & (ORDER NIL A23)))
(((EQUIV (A0031 A23) (TUPLE (SUBSCRIPT A 1) ELLIPSIS (SUBSCRIPT A N)))

IF (LIST A23) & (ORDER NIL A23))
((NOTATION NIL A23 (A0031 A23)) IF (LIST A23) & (ORDER NIL A23))
((SET (A0032 A23)) IF (EQUIV A71 (SUBSCRIPT A I)) & (LIST A23)

& (ORDER NIL A23))
((IDENTIFIED-BY NIL (A0032 A23) S)
IF (EQUIV A71 (SUBSCRIPT A I)) & (LIST A23) & (ORDER NIL A23))

((MEMBERS-OF A71 (A0032 A23))
IF (EQUIV A71 (SUBSCRIPT A I)) & (LIST A23) & (ORDER NIL A23)))))

There are a variety of operations that are performed on these lists.

(((VARIETY (A0033 A23))
IF (OPERATION A29) & (PERFORM NIL A29 A23) & (LIST A23) & (ORDER NIL A23))

((MEMBERS-OF A29 (A0033 A23))
IF (OPERATION A29) & (PERFORM NIL A29 A23) & (LIST A23) & (ORDER NIL A23)))

These operations include the following.

(((INCLUDE A16 A340) IF (FOLLOW A340) &
(EQUIV A16 (SETOF A0034

(AND (OPERATION A0034) (PERFORM NIL A0034 A23))))
& (LIST A23) & (ORDER NIL A23)))

Find the length, N, of the list.
(((.EQUIV (A0037 A23) N) IF (LIST A23) & (ORDER NIL A23))

(LENGTH (A0038 A23) A23) IF (LIST A23) & (ORDER NIL A23))
(((EQUIV (A0038 A23) (A0037 A23))) IF (LIST A23) & (ORDER NIL A23))
((FOLLOW (FIND NIL (A0038 A23))) IF (LIST A23) & (ORDER NIL A23)))

Retrieve the Ith element, 7<=1<=N.

((LE 1 1) IF (ELEMENT A22) & (IDENTIFIED-BY NIL A22 I))
(LE I N) IF (ELEMENT A22) & (IDENTIFED-BY NIL A22 I))
((FOLLOW RETRIEVE-FROM NIL A22 NIL)) IF (ELEMENT A22) &
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(IDENTIFIED-BY NIL A22 I)))

Store a new value into the ith position, 1<=I<=N.

(((LE 1 I) IF (POSITION A33) & (IDENTIFIED-BY NIL A33 I) &
(VALUE A15) & (NEW A15))

((LE I N) IF POSITION A33) & (IDENTIFIED-BY NIL A33 I) &
(VALUE A15) & (NEW A15))

((FOLLOW (STORE NIL A15 (INTO A33)))
IF (POSITION A33) & (IDENTIFIED-BY NIL A33 I) & (VALUE A15) & (NEW A15)))

Insert a new element at position I, I1<1<=N+1 causing elements numbered
,/+ 1,...,N to become numbered + 1,/ +2,...,N+ 1.

(((POSITION (A0062 A18)) IF (ELEMENT A18) & (NEW A 18))
((IDENTIFIED-BY NIL (A0062 A 18) I) IF (ELEMENT A 18) & (NEW A 18))
((LE 1 I) IF ELEMENT A18) & (NEW A18))
((LE I (PLUS N 1)) IF (ELEMENT A 18) & (NEW A 18))
((FOLLOW (INSERT NIL A 18 NIL (AT A0062 A18))))
IF (ELEMENT A 18) & (NEW A 18))

((ITEM-OF (A0063 A54 A 18)
NIL
(SEQUENCE (PLUS I 1) (PLUS I 2) ELLIPSIS (PLUS N 1)))

IF (ELEMENT A54) & (ITEM-OF A62 NIL (SEQUENCE I (PLUS I 1) ELLIPSIS N))
& (IDENTIFIED-BY NIL A54 A62) & (MBER A62) & (ELEMENT A18) & (NEW A18))

((CAUSE (INSERT NIL A 18 NIL (AT (A0062 A 18)))
(COME-ABOUT (AND) (IDENTIFIED-BY NIL A54 (A0063 A54 A 18))

(NUMBER IA0063 A54 A18)))))
IF (ELEMENT A54) & (ITEM-OF A62 NIL (SEQUENCE I (PLUS I 1) ELLIPSIS N))

& (IDENTIFIED-BY NIL A54 A62) & (NUMBER A62) & (ELEMENT A18) & NEW A18)))

Delete the element at position I, I<= I<=N causing elements numbered
I + 1,...,N to become numbered /,/1 + ,...,N- 1.

(((POSITION (AO076 A 17)) IF (ELEMVENT A 17) & (AT A 17 A27))
((IDENTIFIED-BY NIL A0076 A 17) 1) IF (ELEMENT A 17) & (AT A 17 A27))
((LE 1 I) IF (ELEMENT A17) & (AT A 17 A27))
((LE I N) IF (ELEMENT A 17) & (AT A 17 A27))
((FOLLOW (DELETE NIL A17)) IF (ELEMENT A 17) & (AT A17 A27))
((ITEM-OF (A0077 A51 A 17)

NIL
(SEQUENCE I (PLUS I 1) ELLIPSIS (SUB N 1)))

IF (ELEMENT A51) & (ITEM-OF A59 NIL (SEQUENCE (PLUS I 1) ELLIPSIS N)) &
(IDENTIFIED-BY NIL A51 A59) & (NUMBER A59) & (ELEMENT A17) & (AT A17 A27))

((CAUSE (DELETE NIL A 17)
(COME-ABOUT (AND (IDENTIFIED-BY NIL A51 (A0077 A51 A17))

(NUMBER (AO077 A51 A 17)))))
IF (ELEMENT A51) & (ITEM-OF A59 NIL (SEQUENCE (PLUS I 1) ELLIPSIS N))

(IDENTIFIED-BY NIL A51 A59) & (NUMBER A59) & ELEMT A17) & (AT A17 A27)))
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